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RERIW S ; B2 BE R 51T, AW REr AN ESSREE ARSI S MEATIR 2 Bk

KA AR (40 GAN Fndl BiRY) RERBEHEA, (HilRIZRAIRE, A=A B
SUENMESPRAL B, REWAE, B -HEARARNARESEGH TETA DR, ARRBEE ]
BERRYE B AR EZEE, BIRSmal R, RAEHEHEREA RS, Flam, FIHE
FREIRIBATILIOGR, FES FSL SRR SERY A BRIFEA BT,

AL, Eofim m R S BOR B AR IEAE BT E X B AT IR, ECMESN, HEH
PRMERIESEEAR, ¥ RBIZIENEA, TN THRINEAR, LRSI
MAML 5576, BB B S B RARS pN T — M2 e 5 B, iy
AR SIE BE XY AR, N T AR B E S0 BRSO Y, (B R I0iE,
(BRI ER G R ek 1 TR & 2k

RIMEZ, USR], NERAREDEARLE Mo ), SiE—8
KRBAFEEI T EAREIERE (nEdaie=manil ©©) | EaRpRBTR a5 1k
PUESEIMARAEAE 7, DAMCEE XA GE (i pkidids) Aot fCElEr © A U]
BRI &, Bl TR RS & A 4 2 RAV R L TT AR,

W, SEER B

[EI B 7 Al FUsESRRR -5/ MEA LSRN ZEINRR, W LR B R ISR BIIE Z2RiFn
FRBRE, EOLREE T YA ers R, X BRI — MR B SefEE
HLEs 22 S TS IR VEEIC I R,  Bla = 7 Al SUSRRODESEA TR, BE IR T
fo R 7 1 A BARIEI R,

BEMAN/NMEREIEE

o JRAIN L (Prototypical Networks) (Snell et al., 2017): 33X & J& T &%) FSL 20
W) — N EEEEM, Z TAERE T MERmMARN T, B Rz
FAE T G2 5 R A IR B RH T 028 1, IR NS S T IRk gL, FHIEW]

=
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TAEBIRABRAVEDL T, B RRAMRIRE rTRELL & 2R SR N AL,
TEE B TIREIR A, B ARG SN EESS, g o,
BRI >) (MAML) (Finn et al., 2017): X2 5 T LAY 70 5 SIS — AR &
PETAE, MAML f24t T — @ AOREZE, A TGRS, i Krewsmd &6
BE TS RCHTESS o BT/ MEAR BG4y S U RIS T Y B AR MR RE,
R T HAERYF a2 b SRR EAYE A P, MAML 7EEFE&  BIfn 42
ST R FAGE] T G O,

AR XTI L (GANs) FEE & TR R R

BHINAERE : B GAN #a2 LUk, HAREFEE G AT A ) RS2
o DCGAN (Deep Convolutional GAN): /951 GAN 2242 —, DCGAN i#5d 5]
ANEBREGEH), EFRI T GAN JIEHTREME, 92N TG MRI 2y 28541

% 260

o StyleGAN (Karras et al.): StyleGAN 7£ 0 B CLHE AK) WERRREFZ
BV S TEORZE B, HAERGE PR, EEEGREE ), R TR
5 HSE B AL T SRR A A 22, [3 (140 StyleGAN2 I T 9% CT &
)],

Ri¥F GAN BOHkEE © KEMFZEE) T 287 GAN YIZRFE FBBIAOB AR, BT

FNM SR M B, AR AR i (label smoothing), H#EVCHEL (feature

matching) Al #4518 58 (differentiable augmentation) 257K '3,

REGHEGEAR 0 Y & (B3 2016-2019 4E3CHRK) Fn Kazeminia %5 ANFOZRuRFE H,

GAN Ay E =BG EEA L, BT, ANFD 512 R 9 58 21 SR B

Tt (EFIRTHL5R B T X IR B A A 280 BRI R AR 26,

T AR RITE R AR R R 5 B A R P RO

PERF IR « 50k, BT AEpam i, S LEBRIRE M &
ZHEH, fERLET B T GAN,
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o AZBBBAARK : I T4 MSDM XA, T ARHE IR PR ST Il A6 Bl 1= 52
B, R THOBREIIIZER (40 FLUX, Kandinsky) 5314/ NSk &
RIS 2,

o BOMER-HEZEBREHK : BN SLEEN LRSI (W CT. MR) , #F
REIFKR T EIINZEM), 0 WDM (Wavelet Diffusion Models), BE#41F 1283 H:=E
2563 o HER T AR MR EES, HERGRER FmEs Ui GE 7, XX
TREARE R G i — D R,

B SITEWMERES: Al FROM A

o BIEMLGRIEMER : BRI TAMFEF=IIATR, AR TSI
RJEFIN I,

e NVIDIA Clara Train SDK: J9[E AL USRI BRI = S 1 i T — NS, 5 TRy
EfR, %R RIS e -% P AR, i (3 R SO SR R A dE R ORI IR
FL, MREE T ZHUEBIR 22 R TME 2,

B Al JugoRBrYTFE S5 FSL G

o EPXIETFEAM FSL HIRGIERE (fldn?) MIAHEAR (QfFoyS., WEESIfmEE
B53051E) . FERNAGU GG, B, EERG) BT T ammieE, RS
FRGNEIERL S iR

o &/ (Meta-Learning With Medical Imaging and Health Informatics
Applications) &% 2", RGURLE | oo I AT = = G i E B
AL, TR TSR INR T HZA WA, JFRONFEAN SRt T 5= R BT,

B R S8 AT 42

o AAIfF FSL %, GANs 2 FiLf 22> 4 N THrE R LB OIS (BRI E Sy
K20 R X ST, IR RO RIATIERIZE, NJR SR TR AR & 2RISR ST
£

T LA,
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XL B R AR OE G T RO T TR MR IR RE A I D B BdIR 2 X7, BT ER 1) BT
BIRIISEPRNL B &, BlaninflfrIFEdERAL BOBFIRSGE) | anfa T A s iy
FrEfn et O GAN BISeti Bodii) |, DUMAR AT 2 2 2 SUBHY Rr 2 7 oK
(n=ZEm o PEREBR AN  ZRRIEEY, ZIURIEERETRR, MBAER
ARAATHE, B EE ST R AT, KB EE, L AR Al N,
XM IR AE AR ZEMTF B Tk B TREBHE A A RERAR M, SR Ik 4R &k
L(NTES

., FAERS

BARRRBRAN NEARZL I A PR A ARIERTE A, RS Al PR RERR o b R AR A
o AR 24 W AEAERRARPR SR AN L A5 Pt i A 22 S5, DUPRE Al BRI e b A
Il PR w] FH A= AR 35

5.1 ERETEFEE Al BAF]

XN TR EFHRE LI AR K B2k, FRRES LR, £ TEPEIRRIAE
wHkE, BN R R IR T B E R SR R G,
e PathAl:

o BEARENA : FR—FMIer) Al IRem B P HORTR LR 2, PathAl FIlFH JE Y
PlesaSEE, O TG IR RER L B REIE" %, RN P E R
ITHPE, HHERRIZIT, H AISight® a2 — N AR EGRE LR EG, Ak
T PathAl B & &5 =51 Al Hik %, PathAl H4EmA52/AF] (40 Discovery
Life Sciences **, Precision for Medicine 3) &1E, Al NH TAEWEARSy

Hr. B LESrgE, AinS &RIAIRRINIEARSS, BIERTH MRS
— BRI AT SR 3 RARATFEBERIARTR L/ MEARTES]”, (HHRIE G
SRS R TN K & 2R A AR S B I TR TR ERY AR R
B, R T AR A BRSO S R e B 2R B MR, SR T & ZRAVEE A B
FRRFE S B,

o FARRMEIER . B ARSI LEEE, IR AEHILR Al fRRTTZ%,

=
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KB PathAl RECTF Al T W ENR G40 E BAR SRR S A ORI, AR Y E i 17
TERY R F ko)L,

Paige:
o HARENHA : Paige HJ) TH A& Al %47 (40 Paige Prostate) LI%BJHPE = A4

BAPREIDIT S, HRROPEHRE R, Al RIS ER S AT
WRHERPERSCR T T s, —BWIERYI, Paige Prostate MU
PESKE] 99%, HEFHEAEI 93%, JFHTRIIN B 1 65.5%, KRB T—
s 5 8 2R O BRI A IR RO R 1,

o FIERMEBER : Paige WARFBMEBRAMELSREIAITING (MEIEARKUER

RPN T LAHERT) (B SRAVR SR IE T LR BB IR GIRIRE /), W] HARRL B,
TR KA AIRBIRE S, XX TR BLE SR thfg N A AR LIS AEE H s
B ATREAIRAOIE DB 2L, RF Al ATV BT TR e e 7 HAAT Al M
A Eth i RAL IR R METE B RISR I,

e Aidoc:
o BARENH : Aidoc #&fLIfmK Al fER 52, 5% HoiTES 28, ik LT

TEVRE, LCRABEERURGI, FRERMSS R, OB, e i A8 B & B % 2 4
TRIUHE T EIBA ¥, K alOS™ERIRE T LM Al TR ¥, #aikiE, Aidoc
HIRR D7 R T B IRIRRAR, BIAnRHiitegE (PE) & R i Bl 8% T
31% ¥, ZAFRNSHBERKR, CEEARZET L, B REBE L

37

BAERIEET . Aidoc 1EZNTRIGUSHIRLEIRH], FRITHIBATREARE, X
SRR wIRE B 2LV BAR R VIZR T A, FF el RESR A T BdE & A Bk
SABRAN R f 351 S5 A s BRARFALE O 22 S

Rad Al, Gleamer, Annalise.ai, Oxipit, DeepC %:

LLN R RIS TR E ISR Al s T E, EETFAasbEsS ok
SRR | EEN2Wr (anelth. Wi X STEefifi) DLk Al T EAE LG
%, BN, Annalise.ai 52 VB H 23R B R A T TARVERD RS & B B 4ds

RN ZRAERY 36,
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o BIERMEER 1 XLEAFRILFEAETHA Al NERH), SEIRENEEZG
FIEPUR RIME, DHETH2 WA AnE i, X3 ARIEEE 7 75K e i Al B 3

AOFR SR, HLIBIEELCME s N AR E MR A 5 (XL S B T REATR) AU K
PEo

5.2 BETEIRMR T RIGAF]

XN FIHEHE R il B R SSELHE B AR AR I0), RAMRIP AR A R FOE, NE
Al B AR AL SO,

¢ NVIDIA Clara:
o YABEEHAK : NVIDIA Clara = —MER YA, B (40 MONAI, FLARE) Fifik
FT—IRRGEAMRI TS, M ETERIN) Al N, WREFZER, 8T
BEREFNZM AN ¥,

o BXFRES] (FL) : NVIDIA Clara Train SDK XFFEXFRSIThRE, IF L MHUITER
AR R BB A AT T EIIZR Al R 2 FHOR RO IRSS g -7 P i 4L 14 8
TIRA K B AR P SR S A 4 A, [RIBS PRIPEIR R AL 2, B
MR REZ2 R ZHUMERFRIH, RN X EE 173180 32 FRFnSaa # i o Pk ik

o FENW : EITIEESTRRFAEMARTR TR E A EdRSE, BRI A B T

AR, (2 LEE ) AR Al FRRY
e MDClone:

o BHRAEMNHA : MDClone 2t — e SEEIRRINE BT LS, REBMNE

SEHYEE I7 Bt QU ST 2 RAE AR CUE A & A AN ANRBE B (PI) AOA pliidte
RAFAFHFTEN 53 ] IMEA R BE RRALROE UL T AT EE 0. Soda=EH
fedtE 1 [+ O TE Ry — i PER ), “11,

o M . ERERLE NMEREER (VHA) FHUF] T MDClone HIF kRS A
TEREE, FEFRERTY SHOSE N R REIRAT B Bh U ER R, 43#r4n COVID-
19 BFATEES, BRI, AT R EIRRALER 2 SI B TN O )
BEHIRABML, FF33R B RIMPFEIR ©,

o ¥¢M : MDClone HIBAREEFET: T M TAFE BT B U R ds vl LM, Zak T
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MFEAFRERIERAIRZ A ], JRES 6 A RIPRAR S DR, (2 T 550D
FZRAH R B HIBAE 4,
o HAhEEREIEAKFIBIAT (40 Mostly Al, Synthesis Al, Gretel.ai, Syntho, Datagen
%)
o XEEAFTETA A BRI, AN FEE 2 4T 5% B B & icids, &

HAFRAMR PR HZ DI E TR — 2

o EFTFEFRME . K, Gretelai FiJFJRINH Synthea Z5E7E & 7 fill fe Sk sz 21 ¢
FE, ENTREE R S M L SR AR SR R R A R B, TR BN RS AR DG BR AL A
FOEEARIHE (B0 Synthea 3 #5 HLT FHIR) %,

o WS AT A LR L A R HRL, AR LIRS, A
TUNERES: Al AR, 1T 5 AR B SEEE mT PRI BR AL 7 i r R, B AT LL
WU ERse . BRNEEG), RIS 4,

5.3 Mk mE IEHHE A 5B
RUEES: AL F=AERTS T, EhmEieE ek, FRZEwRoE B,

o Bk :

ISR IGUE & S5 B4 « UERA Al FRERTEIR PR N RO Z2 e, AR e e

—MEKHERE RN, FEmET FDA GEAEMAMREEH)E) . CE

(RRUNEHINIE) SR ks B 8L, B ATFZ Al T HADRA TR AT ZE4E

F”(Research Use Only) B Ex %,

o IGRIIEMBES : I Al RO CEEMRBIEFEIAR IT AR (Anes7 2k
10 EHR, SRE=(E BRI LIS, EAGA R Halmf5 2451 PACS) 1, X$T5E
PRR OGS, (HAEE AR ERA A %,

o BMEEERITFBEN  IRKEATFEGEE Al BIUNER, XERER A
BAFH) AT ARRENE,  RE TSI B 8 b L SR A

o FARIGEEIMMEL - B2 —ABIERS A TR ROARIERIE DL K @ A B 2
M, AT T RAEL Al B IF R RS

o

z
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o FRAGEZEEIRE (ROI) : mETHLETHIIER Al Rk 75 REE TG FH
BRI AT REAF (L M,
o BEEZE . WlrpHAL Al FRBATME, BERRA. DR SRIPEERAL,
s WAV FE BRSO R iR rO fE PR E) R ©,

o Pl :

WERERRHIIGRT R « EIFZIBR T R M ARSGRAROR 2RI, Al R

AWM SR 2, 1677 BUHR TR R AIE B RINME,

o WMEESFROMHED) : REBUCERE TR, FRARETT AR Al iR %, 5k
BN M MEE T RS S A,

o NERZMBR : Al R, FrplREEE MBI MEm AT 7L, AIEEMN
W) R IR R B T %5,

o AMELETFHOSEM : BlEm ) Al BORRER LT MA B E Bfa SEHL SRS R 4>
PEABIRTY T2,

o W RIARESFHRFAF KM : Al TEALEREF ARIRSIES), LHRE
P57 BRI X B 2 AU HiE X T,

o

MMERRLE AL AR, ATLUREL IS« sEIRIE S Al AR NUAETE SR OB E AR,
BN B T ARSI Al B8, [R]BARAR  R B, 78 PR B QUSRS (A B
Bl AAEdR) e, BAMBEARRBIEEARUERFRANTIRTILE, A8
BARRIE T /e, Joh, RS Al B P in” TEAS L B 45 MANSZ Bk B R i) g 05

RS S, XEEAE AR aE AR, RS TEREE, TARRRE AL &
SRASEIRM A FDRe, BiEmAEIBARNEAERESHE, LA SRR 2L B
Heye T REA TRAImIR Bl et T Al B &5 5T WHEIRfARR 5 17 it
w(nE i EdE AT, BRI ERREE) 2B S RmR AR, Al A AT LU E
Bh 88 =7 OB AR 7 SR SO F B ROBARIRAR, M B T T4 D REROT A RA m PR N
MEHE, XA LEI T WALy T AT W R e A £,

TREE T LAERES: Al JUHEERR, IR HEIEm BRI AR AR

E
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# 4. EF Al FWEEBEE R HEIR R

AEETR BRI EFFEESURN | EIREHOEWA | RBIER R
(5 HHRRER HES & (#43) W
*)

PathAl Al IWENROETIR | SBREIL T, ISk | FEMREATE
B2, HLERY He AT S Hemtk, seamg | ATEIREEE,
>, TRES M R | PEASI— | BRI EE
S, AISIGOE | s e e | BEROERESE | SROPTRED.
BERTAS | g R

Paige Al EghpaiEs | APUBOE, AR | Sammapiswnge | R AHEER
4 (n Paige E%%ﬁ%ﬁ@ WA, B | AR 2
Prostate) % L, PRL, BEL | o A e

WiAYIE] (40 Paige | e T BR Ak
Prostate {127 {EEARNE,
A1 65.5%)

35O

Aidoc alOS™IEH Al F | BB ER (| EEBELEAR | WHES— A EA
f, BMERE | #. L g | B PE) ME | amgatiisg
o7 W) Wil | MEEG%) g e

wooh, LfE | RIS
e, 24 R
T S AT,

NVIDIA Clara ¥ (& BB SE | S HURETER Je I HET B
MONAL FLARE | s sepspeopy | PRESETH | gux mpew
TR, GPU g A momRg. | VIR, R | ok
A5 R, mE | Sememen | R
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ZAREN

MDClone

AT | RO, BB | RBRISOET | ROWSEER
B, BREIRE | wos, aEDAE | R Bk | AUREREK
Rl VO G VHA | AR | T ARRITEE
B N
A S PRSP,
SES 1) o

E5 Al PR ERE R 5 T ROAR, TEIXEDAE Al oK. Bfls TR, RAMEREARR
IBR TARRRRE A RREM S, LRSI SPEM E 2 A ), AR NERem B8
ML AR, AT RGFREMALA R T (SRR R 7 =g, A T REAEA SR UG A 2D,
5 EIRIRY, AR SCAOME AN A HE AR thofp 5 X o I SRR [R]

N, RELERE

BBk -5 N X SR e ] 5

BRFH LA R S | R RIS/ MEARZESIHRBTER, &Y w7 A T RE Uk m @ AR A
P HFP S ER kR, HARRAE T #s O B RALRIPIEAL., s B AOEE R AR G- AR T AR
A PAR T Ba A B S B & 2,

AN LR A, WFFERN LR EPRSRIFSRER T 2 R, R LDAMA

1. BIREER © R EEMNAREAR TR AR A S5, a/MEARYS]
(FSL). Jt%>] (Meta-Learning) i #7->] (Transfer Learning).

2. BEWPLEE : RMAEIEEE (Data Augmentation) fi-& kL% (Synthetic
Data Generation) FHK, LAY FE8F & o] RO BdE 4L,

3. MEERIVMRIFEE : HEmEF+>] (Federated Learning) :XAFAOHESL, LITE(R
FPERFA AT T F1H 2340 2

RUEES G R, (B 7 IEA A ERE S S A RRER, flan FSL w)izfLaE

e
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7. A RREIRRRIEXER, TR IR TSR, DL R nl R R VAN 2
o
KRG MRE

JEEARR, AR Al FEEIRREIASE TR BIRS, LU FIFgE 7 I ESE A
FHE

REBTZILREN T IRH FSLITESIRE « TFREBELEDHEARSMAT, BHES
BB = AHES B R SR L 2 AL PERE RV BRLE,

BRE, LSS RSRIERSHREDE « FrEE AR (Rrpl 27 Bil)
AR, DIVAERTERTAMC G m (OFEAMIRE R ER ST o fi) ¥ 5 B
LUK o3 A PR, RN, T BESREINS A sl D R n A 8] (4N, $&75 AL pi Ry
TERBESEMANHEAR) |, JFEEN — B R RORUEARAE, LU G B E FIRESS iy
ARNE,  FRRESR S A BB o

TR W AR IR BB EE (XAl - X EdRm B8 I AR E Zrp = s, 8l
FEERIMER) XAl Tk, DI@satRng B R, AhlimR = BAE A (E A Al RURET
B, JFARARIRY TR T Ao R AR 7,

B IREIE TROZESEIRMS « KEEB ARG KA RFERIAE L (nESY
g, BFRERICR, ERAFEIRE) rOEOR, RIMERLLBTSA SR B IR b,
o ) E I R R R B B> - A ERRIREE PR, Ed B mE
SPAIN GRS R SRR, 2 S SE PR P RE R R, XU T LUFI
INEAR S S BORE PR E PRSI T = 20,

BEREERRGIE : KRN ARBEARNABMEGIRE A, B, FIHE R
BARBATRABTN 2R, FEE FSL a0 BESEE RIEITHOE ; sid fFEHT >
G720 BALE 2R RBAMRIPEARME G,  DASEIL 22 R EE v,

fEEMER G EALHIREE « SRR S I BRMN,  FeplEid A ki
(Cifmfer, FRAVHEE, FRRBINE ©) MBS (et A mutms, il
FE B M A S B R A f RO TR BE G A,

IRUHE L EHE 5 AL ACSRRORRSL « QU AR5 Al a2 IR SR S PR HE SR R
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FOAREEAL TG U, DMEIEARIE D715 2 BIRYAELER, IR B ER<IUEOR & ©,
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NI Al RS, VAR m Xt sc Rr e r s, thaEA2ue e AR & W AE

BUCEREREEERTHRAL, ) IR ERAD R AR, A 2R Al 7E 512 R
FRIE S CERE AR RON ), ASERNEAY, BEHE, B eS8 M LETT 82E

— IR IR AE M B AER RH R 1A A8 B RE R R RTE AR R, Rk, HdERIR
B, S HORTE LA Ry sE ) (BMEEdE A TR) RPEGECHEE, XE%
T AR A ARSI T Al——@2, BOER,  JFRE M SR 2 3 ik ik
IR, AR, EEB RN H ARV ES: Al SRR EFIN AL D IXE) /) 5-HI 290K 5% °, 8
TG L AR O F AN 22 AR UERIHE R, IS ARA S 2400, # T feMELIR G R e
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